If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+8h-105=0
a = 1; b = 8; c = -105;
Δ = b2-4ac
Δ = 82-4·1·(-105)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-22}{2*1}=\frac{-30}{2} =-15 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+22}{2*1}=\frac{14}{2} =7 $
| -5x+4-4x+6=-1 | | 10x+3(2x-2)=-5x+180 | | c-72=c^2 | | 0.2(d−6)=0.3d+5−3+0.1d | | V=3.142/3^2h | | 13+6x=-(x+1) | | B^2-3b+18=0 | | 108.5=5.50x | | b-9+3b=22 | | 1/2=-5/4+3x/2 | | 4x+2=7x-19=180 | | -4(n-4)=40+8n | | -12+2r=7(1+3r) | | 42x=44 | | -12+2r=7(1+#r | | 5(2x+8)–5x=5(5x+6) | | 40-6x=94 | | 8(m-8)+5=-99 | | 1/3=n/42 | | t÷11=18 | | 4(x+10)=10x+150 | | X+17=23x= | | 1/t+1/7t+1/9t=8 | | 19+5m=6(m+2) | | -12=1÷3x-9 | | 3n+(-2)=12 | | -5=-18-x/7 | | 4=15n | | 13x-22=2(9+10) | | -(1+2r)=-7 | | X+34+x+64=90 | | -5(-4r+4)=-180 |